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Title: Polyhydroxyalkanoates (PHA): natural polymers produced by bacteria, an option 

for the replacement of plastics



The production of plastics has increased significantly, reaching 

350 million tons annually

Five countries originating the most significant amounts of plastic 

pollution are China, Indonesia, the Philippines, Vietnam and Sri Lanka
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Graph 1 Articles published in Science direct on 

Polyhydroxyalkanoates

TianAn, a Chinese company - production of 10 

thousand to 50 thousand tons per year. 

Nodax, a U.S. company, - 91 thousand tons per 

year

Polyhydroxyalkanoates

Introduction



Chemical structure of PHA

O CH (CH2)n C

OR

X

R group No. of 

carbons

PHA polymer

Metyl 𝐶4 Poly(3-Hydroxybutyrate)

Etyl 𝐶5 Poly(3- hidroxivalerate)

Propyl 𝐶6 Poly (3-hydroxyhexanoate)

Butyl 𝐶7 Poly (3-hydroxyheptanoate)

Pentyl 𝐶8 Poly(3-hydroxyoctanoate)

Hexyl 𝐶9 Poly(3-hydroxynonanoate)

Heptyl 𝐶10 Poly(3-hydroxydecanoate)

Octyl 𝐶11 Poly (3-hydroxyundecanoate)

Nonyl 𝐶12 Poly(3-hydroxydodecanoate)

Figure 1. The general structure of PHAs

PHAs are linear polymers that form ester bonds between the carboxyl group of one monomer and the hydroxyl group 

of the next. 

Chain size Strains

Short (3-5 carbons) Rastonia eutropha
Aeromonas vinosum
Bacillus megaterium

Medium (6-14 carbons) Pseudomonas aeruginosa

Long  (15 or more carbons )

Table 2. PHA Classification



Isolation sources and nutritional factors that

affect its production of PHA

Soil samples

Marine Sediments

Dairy products

Used oils 

Concentration and type of carbon source

Nitrogen source concentration

Sharma et al. (2012), determined that the highest 

production occurred when using nitrogen at low 

concentrations 

Yüksekdag et al. (2007) results showed that the 

percentage of PHB increased when using sucrose 

(35.56%) compared to the control (glucose) (12.47%) 



Metabolic pathways for the synthesis of PHA.
Pathway VI

oxaloacetate

Threonine

2-Ketobutyrate

Propionyl-CoA

3-Ketovaleryl-CoA

(R)-3-Hidroxyvaleryl-CoA

Pathway V

TCA Cycle

Succinyl-CoA

Succinic semialdehyde

4-Hydroxybutyrate

4-Hidroxybutyryl-CoA

Acetyl-

CoA

Acetoacetyl-CoA

3-HB-CoA

sugar

Pathway I

Manonyl CoA

Manonyl-ACP

3-Ketoacyl-ACP

Enoyl-ACP

Acyl-ACP

R-3-hydroxyacyl-

ACP

Pathway III

Fatty acids 

Enoyl-CoA

(S)-3-Hydroxyacyl-CoA

3-Ketoacyl-CoA

Acyl-CoA

(R)-3-Hidroxyacyl-CoA

2-cis-enoyl-

CoA

Pathway II

Butyric acid

Butyryl-CoA

2-Butenoyl-CoA

S-3-Hidroxybutyryl-CoA

Pathway IV

Fatty acid A

Fatty acid B

Acyl-CoA Enoyl-CoA

S-3-Hydroxylacyl-CoA

R-3-Hydroxyacyl-CoA 

A

R-3-Hydroxyacyl-CoA 

B

Pathway X

1,4-Butanediol

4-Hydroxybutyrate

4-Hydroxybutyryl-CoA

Pathway VII

5,6-Alkanolactone

4,5-Hidroxyalkanoate

4,5-Hydroxyacy-CoA

Pathway VIII
3-Hydroxypropionaldehyde

Glycerol

3-Hidroxypropionyl-CoA

3-Hydroxypropanoate

1,3-Propanediol

Pathway XIII Pathway XIV

Sugar

pyruvate

Lactate

Lactyl-CoA

Pathway XI

2-hydroxybutyryl-CoA

citraconate

β- metyl-D-Malate

2-Hidroxybutyrate

R-citramalate

Pathway XII

Cyclohexanol Cyclohexanone
ε-Caprolactone 6-Hydroxyhexanoate

6-Oxohexanoate

Hexanedioic acid

Adipoyl-CoA

Hexanedioic semialdehyde

6-Hydroxyhexanoate

6-Hydroxyhexanoyl-CoA

Vía IX

PHA
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Figure 2. Pathways for PHA synthesis 

Enzymes for PHA synthesis: 1(β-Ketothiolase);2 (NADPH dependent acetoacetyl-CoA); 3(PHA synthase); 8 (R-Enoyl-CoA hydratase); 9 (Epimerase); 10(3-ketoacyl-CoA reductase);11(Acyl-CoA oxidase, putative); 12 (Enoyl-CoA hydratase, putative); 13 (3-Hydroxyacyl-ACP-CoA

transferase); 14 (NADH-dependent acetoacetyl-CoA reductase);15 (Succinic semoaldehyde dehydrogenase); 16 (4-Hydroxybutyrate dehydrogenase); 17(4-Hydroxybutyrate-CoA transferase); 18 (Aspartokinase I, Homoserine kinase, Threonine synthase); 19 (Threonine deaminase); 20

(BktB(PhaA)); 21 (Alcohol dehydrogenase, Aldehyde dehydrogenase); 22 (Hydroxyacyl-CoA synthase, putative); 23 (Lactonase, putative); 24 (Cyclohexanol dehydrogenase); 25(Cyclohexanone monooxygenase); 26 (Caprolactone hydrolase); 27 (6-Hydroxyhexanoate dehydrogenase); 28 (6-

Oxohexanoate dehydrogenase); 29 (Semialdehyde dehydrogenase, putative); 30 (6-Hydroxyhexanoate dehydrogenase, putative); 31 (Hydroxyacyl-CoA synthase, putative); 32 (3-Ketoacyl-CoA thiolase, 3-hydroxyacyl-CoA dehydrogenase); 33 (Lactate dehydrogenase); 34(Propionate CoA-

transferase); 35 (Type II PHA syhthase); 36(α- Isopropylmalate synthase); 37(3-Isopropylmalate dehydratase); 38 (3-Isopropylmalate dehydrogenase); 39 (2-Hydroxybutyrate dehydrogenase); 40 (Propionate CoA-transferase);41(Type II PHA syhthase); 42 (Propionyl-CoA synthase); 43

(Glycerol dehydratases); 44 (Propionaldehyde dehydrogenase). Source: Modified from Meng et al.,2014

A total of 14 

pathways have 

been reported for 

PHA synthesis 



Physicochemical properties of PHAs
Samples Tm σ (MPa) ε (%)

PHB 177 43 5

P(3HB-co-20%mol3HV) 145 20 50

P(3HB-co-16%mol4HB) 150 26 444

P(3HB-co-15%mol 3HHx) 115 23 760

P(HB-co-10%mol HV) 150 25 20

P(HB-co-20%mol HV) 135 20 100

P(HB-co-10%mol HHx) 127 21 400

P(HB-co-17%mol HHx) 120 20 850

Polypropylene 170 34 400

Polystrene 110 50 -

Polyethylene 130 - 500

HDPE 135 29 620

LDPE 130 10 7300

PET 262 56 -

Tm: melting temperature; σ: Tensile strength; ε: Elongation at break; HDPE: high-density polyethylene; LDPE:low-

density polyethylene; PET: poly(ethylene terephthalate). Source: modified of Muhammady et al., 2015



Method for the identification of PHA-
producing bacteria

 Sudan black dye B

 Ethanol

 Xylene  Nile blue A or Nile red 

 Dimethyl sulfoxide 

 Ultraviolet light 

Ching et al. (2007) isolated bacteria from marine 

sediments and four colonies were positive in the 

Nile red staining test (the genus Vibrio )

Mohammed et al. in 2019, isolated two bacteria 

(different Bacillus species) and tested positive 

using Sudan black B and Nile blue A. 

Transmission electron microscopy

of the Vibrio MAT-28 bacterium

isolated from the Ebro river, 

Catalonia.



Methods used for PHA Extraction

Solvent extraction Chemical digestion Physical methods 

Cell disruption and removal of the protein sheet surrounding the PHA granules are necessary to extract PHA 

granules. 

Samori et al. (2015) used this 

solvent to extract PHA from 

mixed cultures (Amaricoccus 

sp., Azoarcus sp. and

Thauera). They obtained a 

purity of 98 % and a polymer 

molecular weight of 1.2 MDa. 

Ramsay et al. (1990) extracted 

PHB from Alcaligenes 

eutrophus using sodium 

hypochlorite and surfactants 

(SDS and Triton X-100). They 

obtained purity of 97 to 98 % 

with a molecular weight 

between 730000 Da and 

790000 Da when using 

surfactants.

Hwang et al. (2006) obtained 

PHA and synthesized 

Haloferax mediterranei using 

ultrasonication with an 

amplitude of 20 kHz and a 

power of 525 W.



Methods for structural characterization of PHA

FTIR analysis GC analysis:

PHA monomer 

composition (%)

Wave-number

(cm-1)

Possible PHA

components

1728

1262

PHB 100HB

1739

1261

2925

HB and mclHA 92HB, 8HD

1739

1260

2924

HB and mclHA 98HB, 2HO

1744

1165

2926

mclHA 0.3HB, 58HO, 41HD

1744

1162

2926

mclHA 22HO,78 HD

1744

1665

2928

mclHA 0.6HB,19HO, 80HD

1744

1165

2928

mclHA 0.4HB,20HO, 80HD

1739

1257

2926

HB and mclHA 23HB, 39HO, 38HD

1739

1258

2926

HB and mclHA

14HB, 50HO, 36HD

1739

1257

2926

HB and mclHA 22HB, 40HO, 38HD

FTIR analysis GC analysis:

PHA monomer 
composition (%)

Wave-number

(cm-1)

Possible PHA

components

The method used for the structural characterization of PHA is Fourier transform infrared spectroscopy (FTIR). This 

method can be combined with gas chromatography coupled to mass (GCMS) which helps to quantify and determine the 

proportion in which each PHA is present in the structure.



Biodegradability of PHAs

Enzyme attachment to PHB

Adsorption on single cristal 

surface

(I) Catalytic domain

(II) Linker domain

(III) Binding domain

PHB depolymerase

components
PHB depolymerisation

Degradation of single crystal

(I) a binding domain responsible for surface adsorption and breakdown of the 

polymer structure

(II) a linker domain that joins the binding domain to the catalytic domain

(III) a catalytic domain that cleaves the PHA and any available dimer/trimer in two 

parts 

Bacterial genera: 

Bacillus

Clostridium

Comamonas

Enterobacter

Klebsiella

Pseudomonas

Staphylococcus

Streptomyces

Fungi: 

Acremonium

Aspergillus

Candida

Paecilomyces

Emericelopsia



Applications of the PHA

Food services

Agriculture

Medical

Chemicals

Automotive

Disposable gloves, 

disposable aprons

de comida

flowerpot

Absorbable sutures and 

meshes

Plastic additives

Bottles
Garbage, gift and transport 

bags

Food containers and utensils

Slow release of

fertilizers into the soil

Microencapsulation, slow release drug

for formulations, bone plates, gowns

Adhesives, paints, coatings, fine 

chemicals

Automotive parts

Conrrent Futures

Packaging



 The accumulation of plastics in the soil and the oceans is becoming more evident and

alarming.

 This problem is caused due to poor waste management by governments and the industry's

increased plastic production.

 Recyclable materials have been proposed to reduce the accumulation of plastics. However,

people's lack of awareness causes the recycling process to be inefficient. It is easier to throw

garbage on the streets where we walk than find a recycling point.

 PHAs have the advantage of the show a wide variety of structures that can be used

individually or in combination to improve their characteristics.

 PHA is that it can be degraded by enzymes of the PHA-producing bacteria or bacteria living

naturally in soils and seas. They can be degraded in less than two months, depending on

environmental conditions.

 The varied applications of PHA have led to their industrial production in different countries

such as China, the United States and Canada.

Conclusions
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